Desafíos numéricos y soluciones hiráulicas prácticas a escala local: caso unidad chontalpa, Tabasco, México

Authors

  • Andrés Pérez-De la Cruz Universidad Juárez Autónoma de Tabasco image/svg+xml
  • Gastón Priego Hernández Universidad Juárez Autónoma de Tabasco image/svg+xml
  • José Guadalupe Fabián Rivera Trejo UJAT

DOI:

https://doi.org/10.19136/jeeos.a9n3.6614

Keywords:

Modelación hidráulica urbana; HEC-RAS 2D; inundaciones locales; topografía de alta resolución; soluciones estructurales

Abstract

Se presenta una modelación hidráulica bidimensional de alta resolución para evaluar el comportamiento del flujo superficial en la Unidad Chontalpa de la UJAT, una zona caracterizada por su topografía plana y frecuentes eventos de inundación. El objetivo fue diagnosticar el funcionamiento actual del sistema de drenaje y proponer soluciones estructurales prácticas. Se construyó un modelo numérico en HEC-RAS 2D V6.6, con base en un Modelo Digital de Elevación corregido mediante datos topográficos y batimétricos de alta precisión. Se simularon escenarios bajo dos condiciones: sin intervención y con obras hidráulicas propuestas (canales, bordos y una laguna de regulación). Los resultados muestran que, en condiciones naturales, el sistema presenta anegamientos prolongados con tiempos de residencia mayores a 10 horas. En contraste, la implementación de obras reduce el área inundada en un 90%, disminuye los tiempos de salida y disminuye los niveles de lámina de agua. El estudio confirma la importancia de modelos a escala local con alta precisión espacial para el diseño de intervenciones efectivas en entornos urbanos planos. La metodología propuesta es replicable en otras instalaciones con características geomorfológicas similares.

References

[1] M. S. Horritt and P. D. Bates,"Evaluation of 1D and 2D numerical models for predicting river flood inundation," J Hydrol (Amst), no.268, pp. 97–99, Jan. 2002, [Online]. Available:www.elsevier.com/locate/jhydrol.

[2] J. Neal, I. Villanueva, N. Wright, T.Willis, T. Fewtrell, and P. Bates,"How much physical complexity is needed to model flood inundation? "Hydrol Process, vol. 26, no. 15, pp.2264–2282, Jul.2012, doi:10.1002/hyp.8339.60

[3] M. S. Horritt, P. D. Bates, and M. J.Mattinson, "Effects of mesh resolution and topographic representation in 2D finite volume models of shallow water fluvial flow,"J Hydrol (Amst), vol. 329, no. 1–2, pp. 306–314, Sep. 2006, doi:10.1016/j.jhydrol.2006.02.016.

[4] K. Marks and P. Bates, "Integration of high-resolution topographic data with floodplain flow models," in Hydrological Processes, John Wiley & Sons Ltd, 2000, pp. 2109–2122. doi:10.1002/1099-1085(20000815/30)14:11/12<2109:aid-hyp58>3.0.co;2-1.

[5] K. Guo, M. Guan, and D. Yu, "Urban surface water flood modelling-a comprehensive review of current models and future challenges," May 27, 2021, Copernicus GmbH. doi: 10.5194/hess-25-2843-2021.

[6] K. Bakuła, M. Stȩpnik, and Z. Kurczyński, "Influence of Elevation Data Source on 2D Hydraulic Modelling," Acta Geophysica, vol. 64, no. 4, pp. 1176–1192, Aug. 2016, doi: 10.1515/acgeo 2016-0030.

[7] A. Casas, G. Benito, V. R. Thorndycraft, and M. Rico, "Thetopographic data source of digital terrain models as a key element in the accuracy of hydraulic floodmodelling," Earth Surf Process Landf, vol. 31, no. 4, pp. 444–456, Apr. 2006, doi: 10.1002/esp.1278.

[8] L. M. Sidek et al., "High‐resolution hydrological‐hydraulic modeling of urban floods using infoworks icm," Sustainability (Switzerland), vol. 13, no. 18, Sep. 2021, doi: 10.3390/su131810259.

[9] S. Yuan Fong, L. Yan Ting, J. Jiun Huei, and H. Jen Yu, "High- Resolution Flood Simulation in Urban Areas Through the Application of Remote Sensing and Crowdsourcing Technologies," Front Earth Sci (Lausanne), vol. 9, Jan. 2022, doi:10.3389/feart.2021.756198.

[10] N. M. Hunter, P. D. Bates, M. S. Horritt, and M. D. Wilson, "Simple spatially-distributed models for predicting flood inundation: A review," Oct. 15, 2007. doi:10.1016/j.geomorph.2006.10.021.

[11] P. Costabile, C. Costanzo, D. Ferraro, F. Macchione, and G. Petaccia, "Performances of the newHEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the art model," Water (Switzerland), vol. 12, no. 9, Sep. 2020, doi:10.3390/W12092326.

[12] G. W. Bruner, "HEC-RAS 2D User's Manual," Davis, CA, 2020. [Online]. Available:https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/latest

[13] J. A. Hernandez-Ramon, G. Priego-Hernandez, K. K. Plesiński, and J. G. F. Rivera-Trejo, "Management of an urban lagoon. Study case: Ilusiones Lagoon, Tabasco, Mexico," Ecosistemas y Recursos Agropecuarios, vol. 10, no. 3, Oct. 2023, doi:10.19136/era.a10n3.3756.

[14] M. García-Reyes, F. Rivera-Trejo,G. Priego-Hernández, and G. Soto-Cortes, “Análisis hidrodinámico en un canal de derivación: Caso El Censo, Municipio de Centro,61Pérez- De la Cruz A.1 Vol.9 Num 3: 2025 pág. 47-62 Registro ISSN 2448-8186 DOI:10.19136/Jeeos.a9n3.6614 Tabasco,” Journal of Energy, Engineering Optimization and Sustainability, vol. 1, no. 2, pp. 23–42, Jun. 2017, doi: 10.19136/JEEOS.A1N2.1896.

[15] G. W. Brunner, "HEC-RAS HEC-RAS 2D User' s Manual," 2021.

[16] G. A. Priego-Hernandez, H. Rubio-Arias, and F. Rivera-Trejo, "Hydrodynamics and measurement of natural currents in a plain river using acoustic Doppler equipment," Ecosistemas y Recursos Agropecuarios, vol. 5, no. April, p. 14, 2018, doi:10.19136/era.a5n14.1515.

[17] G. A. Priego-Hernández and F.Rivera-Trejo, "Secondary currents: Measurement and analysis,"Atmosfera, vol. 29, no. 1, 2016, doi: 10.20937/ATM.2016.29.01.03.

[18] P. Costabile, C. Costanzo, D. Ferraro, F. Macchione, and G. Petaccia, "Performances of the new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the art model," Water (Switzerland), vol. 12, no. 9, Sep. 2020, doi:10.3390/W12092326.

[19] G. A. M. de Almeida, P. Bates, and H. Ozdemir, "Modelling urban floods at submetre resolution: challenges or opportunities for flood risk management?," J Flood Risk Manag, vol. 11, pp. S855–S865, Feb. 2018, doi: 10.1111/jfr3.12276.

[20] M. J. Alexopoulos et al., "A novel and scalable flood risk assessment framework for cultural heritage based on unmanned aerial vehicle photogrammetry and multi-scale rain-on-grid hydraulic modeling," Science of the Total Environment, vol. 998, Oct. 2025, doi: 10.1016/j.scitotenv.2025.180256.

[21] H. Ozdemir, C. C. Sampson, G. A. M. De Almeida, and P. D. Bates, "Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data," Hydrol Earth Syst Sci, vol. 17, no. 10, pp. 4015–4030, 2013, doi: 10.5194/hess-17-4015-2013.

[22] E. M. Prior, N. Michaelson, J. A. Czuba, T. J. Pingel, V. A. Thomas, and W. C. Hession, "Lidar DEM and Computational Mesh Grid Resolutions Modify Roughness in 2D Hydrodynamic Models," Water Resour Res, vol. 60, no. 7, Jul. 2024, doi: 10.1029/2024WR037165.

Additional Files

Published

2025-12-17

Issue

Section

ARTÍCULO CIENTÍFICO

How to Cite

Pérez-De la Cruz, A., Priego Hernández, G., & Rivera Trejo, J. G. F. (2025). Desafíos numéricos y soluciones hiráulicas prácticas a escala local: caso unidad chontalpa, Tabasco, México. Journal of Energy, Engineering Optimization and Sustainability, 9(3), 47-62. https://doi.org/10.19136/jeeos.a9n3.6614